

Supporting Information

© Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2008

Formation of 1D and 3D coordination polymers in the solid state induced by mechanochemical and annealing treatments: bis 3-cyano-pentane-2,4-dionato metal complexes

Jun Yoshida,^[a] Shin-ichi Nishikiori^{*[a]} and Reiko Kuroda^[b,c]

- [a] J. Yoshida, Prof. Dr. S. Nishikiori
 Department of Basic Science,
 Graduate School of Arts and Sciences,
 The University of Tokyo
 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902 (Japan)
 Fax: (+81)-3-5454-6569
 E-mail: cnskor@mail.ecc.u-tokyo.ac.jp
- [b] Prof. Dr. R. Kuroda
 Department of Life Sciences,
 Graduate School of Arts and Sciences,
 The University of Tokyo
 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902 (Japan)
- [c] Prof. Dr. R. Kuroda
 JST ERATO-SORST Kuroda Chiromorphology Team
 4-7-6 Komaba, Meguro-ku, Tokyo, 153-0041 (Japan)

Figure S1. TG curves of (a) $[Mn(CNacac)_2(H_2O)_2]$ (solution reaction), (b) $[Mn(CNacac)_2(H_2O)_2]$ (mechanochemical reaction), (c) $[Ni(CNacac)_2(H_2O)_2] \cdot 2H_2O$ (solution), (d) $[Cu(CNacac)_2(H_2O)]$ (solution), (e) $[Cu(CNacac)_2(H_2O)]$ (mechanochemical), (f) $[Zn(CNacac)_2(H_2O)_2] \cdot 2H_2O$ (solution) and (g) $[Zn(CNacac)_2(H_2O)]$ (mechanochemical).

Figure S2. IR spectra of (a) CNacacH, (b) [Mn(CNacac)₂(H₂O)₂], (c) Mn-3D,
(d) [Ni(CNacac)₂(H₂O)₂]·2H₂O, (e) Ni-3D, (f) [Cu(CNacac)₂(H₂O)], (g) Cu-1D,
(h) [Zn(CNacac)₂(H₂O)₂]·2H₂O and (i) Zn-3D, measured by the Nujol mull method.

Figure S3. XPRD patterns of (a) CNacacH, (b) $MnCl_2 \cdot 4H_2O$, (c) a mixture of $MnCl_2 \cdot 4H_2O$ and CNacacH after 5 min grinding, (d) $CoCl_2 \cdot 6H_2O$, (e) a mixture of $CoCl_2 \cdot 6H_2O$ and CNacacH after 5 min grinding, (f) $NiCl_2 \cdot 6H_2O$, (g) a mixture of $NiCl_2 \cdot 6H_2O$ and CNacacH after 5 min grinding, (h) $CuCl_2 \cdot 2H_2O$, (i) a mixture of $CuCl_2 \cdot 2H_2O$ and CNacacH after 5 min grinding, (j) $ZnCl_2$ and (k) a mixture of $ZnCl_2$ and CNacacH after 5 min grinding.

Compound	$[Mn(CNacac)_2(H_2O)_2]$	[Fe ₂ (µ-OMe) ₂ (CNacac) ₄]	$[Ni(CNacac)_2(H_2O)_2] \cdot 2H_2O$	[Cu(CNacac) ₂ (H ₂ O)]	[Zn(CNacac) ₂ (H ₂ O)]
Formula	$C_{12}H_{16}N_2O_6Mn$	$C_{26}H_{30}N_4O_{10}Fe_2$	C ₁₂ H ₂₀ N ₂ O ₈ Ni	$C_{12}H_{14}N_2O_5Cu$	$C_{12}H_{14}N_2O_5Zn$
Mr	339.21	670.24	379.01	329.79	331.62
Space group	<i>C</i> 2/c	$P\overline{1}$	<i>C</i> 2/m	$P\overline{1}$	Fdd2
<i>a</i> / Å	9.1222(4)	8.016(2)	7.7703(4)	7.971(5)	12.5272(6)
b / Å	12.5848(8)	9.868(2)	21.2435(15)	8.227(5)	27.3148(10)
<i>c</i> / Å	14.0541(8)	10.433(4)	5.1790(3)	12.025(5)	8.4374(3)
α/°	-	84.415(14)	-	77.969(5)	-
β / °	98.495(2)	76.815(14)	101.817(1)	81.610(5)	-
γ / °	-	71.185(11)	-	66.629(5)	-
$V/\text{\AA}^3$	1595.72(15)	760.3(4)	836.77(9)	706.2(7)	2887.1(2)
Ζ	4	1	2	2	8
μ (Mo K α) / mm ⁻¹	0.853	1.013	1.200	1.566	1.720
^a GOF on F^2	0.929	1.048	1.119	1.099	1.039
${}^{b}R1 \ [\text{on } F, I > 2\sigma(I)]$	0.0347 (1343)	0.0310 (4545)	0.0342 (945)	0.0281 (4216)	0.0388 (2273)
$^{c}wR2$ (on F^{2} , all data)	0.0849 (1805)	0.0807 (5195)	0.0919 (983)	0.0791 (4850)	0.1223 (2422)

Table S1. Crystallographic and experimental data for new complexes synthesized in this study.

^a GOF = $\left\{ \Sigma[w(F_o^2 - F_c^2)^2]/(n-p)] \right\}^{1/2}$ (*n*; number of reflections, *p*; total number of parameters refined), ^b R1 = $\Sigma(|F_o| - |F_c|)/\Sigma |F_o|$.

^c wR2 = $\left\{ \Sigma [w(F_o^2 - F_c^2)^2] / \Sigma [w(F_o^2)^2] \right\}^{1/2}$